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Abstract

This paper presents analytical solutions for the three-dimensional stress distribution around typical stress concen-
trators in an isotropic plate of arbitrary thickness. Based on the assumption of a generalised plane-strain theory, which
assumes that the through-the-thickness extensional strain is uniform in the thickness direction, an exact three-dimen-
sional solution has been obtained for an annulus subjected to arbitrary loading along its edges. Emphasis has been
placed on the through-the-thickness stress constraint, which is a pre-requisite to analysing the effect of plate thickness
on the elastic—plastic deformation at a notch root. Important results are presented on the effects of the plate thickness
and Poisson’s ratio on the in-plane stress concentration factor and the out-of-plane stress constraint factor. By ex-
tending the theoretical method to a plate with a non-circular notch, an approximate solution has been obtained for the
through-the-thickness constraint factor in a plate with a V-shaped notch having a circular tip. The present solutions
have been shown to correlate well with numerical results obtained using the finite element method.
© 2002 Published by Elsevier Science Ltd.
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1. Introduction

The particular problems to be considered in this paper belong to a class of three-dimensional problems,
which are closely related to the plane problems in the theory of elasticity. This class of problems may be
described as follows. Consider a homogeneous, isotropic, elastic body bounded by two parallel planes, as
well as by one or several cylindrical surfaces whose generators are perpendicular to the bounding planes.
Let the body be subjected to surface tractions on the cylindrical boundaries or infinity, and, furthermore, let
these tractions be parallel to the bounding planes and constant along any particular generator of the lateral
boundary. According to the Michell theory (1899), in the limiting cases of very thin plate and very thick
plate, corresponding respectively to plane-stress and plane-strain conditions, the three-dimensional
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governing equations of the problem produce identical solutions for the in-plane stresses. For intermediate
plate thickness, the exact solution is known to consist of an interior component and layer components
(Gregory and Wan, 1988). While the interior solution is significant throughout the plate, the layer solution
has only a localised effect in regions near plate edges. Nevertheless, it has been confirmed by several nu-
merical computations that the corresponding plane solutions of the theory of elasticity provide a good
approximation to the in-plane stresses. However, it is also well recognised that these plane solutions are not
applicable when assessing the out-of-plane stress and deformation (Sternberg and Sadowsky, 1949; Young
and Sternberg, 1966; Folias and Wang, 1990; Krishnaswamy et al., 1998; Li et al., 2000, 2001).

The actual three-dimensional stress and deformation fields near a curved boundary are very complex and
there are only few analytical three-dimensional solutions available in the literature for non-trivial geo-
metries and particular boundary conditions. These particular solutions give a little help in the analysis of
practical problems of finite thickness plates with cut-outs of irregular shape. To develop rigorous analytical
solutions a number of approximate theories (Sternberg and Sadowsky, 1949; Gregory and Wan, 1988) have
been developed to take into account the effects of three-dimensional constraint around a stress concen-
trator. Many of these theories are based on an asymptotic expansion with respect to a small parameter,
which is usually the ratio of the thickness to a characteristic length of the problem. However, it is clear that
the underlying assumption confines the validity of any solutions obtained within these theories to only
small values of the chosen parameter, i.e., for relatively thin plates. Since these theories are treated ex-
haustively in the literature we merely cite the main results, which are important for our purposes.

Analytical as well as numerical investigations reported in the literature showed that there is only a slight
difference between the in-plane stresses obtained from plane-strain theory and three-dimensional finite
element methods. For example, the increase in the stress concentration factor K, for an infinite plate with a
through-the-thickness hole subjected to uniaxial loading is less than 3% (Sternberg and Sadowsky, 1949).
Nevertheless the out-of-plane constraint defined as the ratio of out-of-plane stress to the sum of in-plane
stresses at the mid-plane,

O-ZZ

= V(0x + 0y) M
is strongly dependent on the plate thickness (relative to the hole radius) and can vary between 0 (plane-
stress) and 1 (plane-strain). In the case of elastic deformation, this out-of-plane constraint has only minor
effect on the in-plane stress distribution. However, when plastic yielding occurs at a notch root, this three-
dimensional constraint has a significant influence on the notch-tip stress state. For instance, the in-plane
stress directly ahead of a notch root can exceed the material’s yield stress by up to 70% under plane-strain
conditions (Wang et al., 1999). Approximate methods (Ball, 1999) have been proposed to account for the
effect of three-dimensional constraint on the elastic—plastic deformation at notch root by introducing this
constraint factor C, into existing two-dimensional analysis. However, such an approach would require a
prior knowledge of this constraint factor for a given notch configuration, which is yet unavailable in the
literature.

For the case of wave motion in plates, an approach, which does not introduce a small parameter as in
perturbation solutions and includes the possibility of large transverse shear stress, while still retaining the
simplicity of a two-dimensional model, was introduced by Kane and Mindlin (1956). In this paper this
theory will be denoted as the generalised plane-strain theory. This method has also been exploited by Yang
and Freund work (1985) to study the effect of transverse shear effects for through-cracks in an elastic plate.
Using the same formulation, Krishnaswamy et al. (1998) investigated the stress concentration in elastic
Cosserat plates with a circular hole undergoing extensional deformations. However, their results of the
stress concentration factor of a circular hole under uniaxial tension approached two in the thick plate limit.
These incorrect results led Krishnaswamy et al. to conclude that the Kane—Mindlin theory may be invalid
for thick plates.
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The purpose of the present work is to present an exact solution, obtained using the Kane and Mindlin’s
generalised plane-strain theory, of the stress concentration factor for finite thickness plate containing a
circular hole subjected to remote tension and shear loading. It will be shown that, contrary to the work of
Krishnaswamy et al. (1998), the present solution of the stress concentration factor for a circular hole in an
infinite plate recovers correctly the plane-stress and plane-strain solutions in the thin and thick plate limits.
For intermediate ratio of plate thickness to hole radius, the present result of the in-plane stress concen-
tration factor is only slightly perturbed from the plane-strain result. The out-of-plane constraint, defined by
Eq. (1), on the other hand, increases rapidly as the ratio of the plate thickness to the hole radius increases,
approaching the plane-strain limit of unity. An approximate solution is also presented for a deep notch with
a circular tip by making use of the known plane-strain solution of the problem, which is shown to compare
well with published finite element solutions.

2. Governing equations of the generalised plane-strain theory

The theory of generalised plane-strain (Kane and Mindlin, 1956) assumes that the through-the-thickness
extensional strain is uniform in the thickness direction. In the case of an elastic plate bounded by planes
z = +h, where x and y represent the in-plane Cartesian coordinates (Fig. 1), the displacement field takes the
following form:

z

Uy :ux(xvy)v u}’:u}’(xay)7 UZ:ZW(X,}/)- (2)

It is clear that Eq. (2) implies that lines normal to the mid-plane of the plate in the undeformed state remain
normal to the mid-plane in the deformed state and that these lines experience uniform extensional strain
w(x,y)/h, where w(x,y) is the out-of-plane displacement of the surface z = % of the plate. It is noted that
with the displacement field given by Eq. (2), all the stress components are linearly distributed in the
thickness (z) direction.

With the generalised plane-strain theory, the three-dimensional field equations reduce to a set of two-
dimensional governing equations. This procedure has been illustrated by Kane and Mindlin (1956) in their
work on high-frequency extensional vibration of plates where material inertia has been taken into account.
The system of field equations in the absence of the body forces and inertia effects can be obtained from
Kane and Mindlin’s work by setting the mass density to zero. To facilitate the following analysis, the stress
resultants are defined by

h
(Nxx7NVy7szany) = /h(axxvo-}wo-szxy) dZ, (3)

Fig. 1. Geometry of a plate with a notch, showing Cartesian and cylindrical co-ordinate systems.
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h
RR) = [ (e r)ede )
—h
It is seen that the Ny, N,,, and N, are the usual forces per unit length, and N.. is 2/ times the average
transverse normal stress. Parameters R, and R, are components of “pinching” shear moment, playing a role
similar to that of the transverse shear force in the corresponding equilibrium equations of flexible plates.
The equilibrium equations, in the absence of body forces and inertia effects, can now be expressed in terms
of stress resultants and “pinching’ shears, by substituting Eqgs. (3) and (4) into the three-dimensional field
equations and then integrating with respect to z between the limits £/ (Kane and Mindlin, 1956), except
that the equilibrium equation for z-direction is first multiplied by z before integrating through the plate
thickness,

ON,, n 0N,y —0 ON,, n ON,y OR, OR,

=0, — —N,.=0. 5
Ox oy T Ox dy T Ox + Oy )

Making use of Hooke’s law, the stress resultants and the shear components can be expressed in terms of
the displacement components, setting the shear correction factor to be unity,

Nyﬁ = 2]’1[105“/; + ,u(u[x,,; + M/;J)}, (63)
\ w
N..=2h {AQ + 2/1;} , (6b)
2h* Ow 2h* Ow
RX—T.uav }'_Tﬂ@7 (6C)

where the Greek indices (o, f) = (x,y), and the summation rule applies for repeated indices. The parameter
0 denotes the volume strain,

Ou, Ou, w
_ w 7
ox Oy + h’ 0

0

with 2 and p being the elastic constants, which are related to the Young’s modulus E and Poisson’s ratio v
via the following expressions:

\ VE E
P Ay )
Denoting the mean in-plane stress resultant by
N = (N.+N,,)/2, (9a)
the normal stress resultant N, can be expressed in terms of w and N as
N.. = 2N + 2Ew. (9b)

It is clear that setting the shear correction factor to be unity is justified by the fact that the present result
recovers the special case of plane-stress, i.e., N, = 0, because the out-of-plane displacement at the plate
surface is

V(N Ny\ v

The first two equilibrium equations in (5) can be automatically satisfied by introducing a function @, similar
to the Airy stress-resultant function,
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The third equilibrium equation in (5) yields, noting Egs. (6¢), (9a) and (9b),

6(1+v) ov(l+v)
2 _

R
The system of governing equations is completed by enforcing strain compatibility for the in-plane strain
components (see Appendix A),

vE
1 —»?
where condition (9b) has been used.
It is clear that by contrast to the two-dimensional plane-stress theory, the mean stress resultant N ac-
cording to the present theory is not a harmonic function, i.e., V2N # 0. Combining Egs. (12a) and (12b)
yields the following governing equation for the out-of-plane displacement w,

Viw — K?Viw = 0, (13)
with

It is readily shown that the stress-resultant function is related to the out-of-plane displacement via the
following equation, because V>@® = 2N according to Egs. (9a) and (11),

2VE
1 -2

It is also clear that the stress-resultant function @ is not bi-harmonical, i.e., V*® # 0, except in the special
cases of plane-stress (V2N = 0 hence V>w = 0) or plane-strain deformation (w = 0). This also clearly shows
that the present theory correctly recovers, as special cases, the solutions of plane-strain and plane-stress.

Egs. (13) and (15) furnish a set of coupled equations for the out-of-plane displacement w and the stress-
resultant function @, while the normal stress resultant N, can be found from (9a) and (9b). The boundary
conditions are normally given in terms of the in-plane stress resultants ~,g, which are determined separately
by the stress-resultant function (11),

Ny = _nm Ney = chm R, =0, (16)

N. (12a)

VN = Viw, (12b)

Vo = Viw. (15)

where the barred quantities are known quantities and co-ordinate system is a right-hand system with ¢
measuring along the boundary and # in the direction of outward normal. The last boundary condition for
the function w just means the absence of the transverse shear stress on the boundaries of the body under
consideration (see Eq. (6¢)).

3. General solutions for an annulus

The particular problem to be treated subsequently consists of determining the stress resultants
throughout an annulus, with inner and outer radii being respectively ¢ and b, and thickness being 24. The
annulus is subjected to arbitrary tractions along its inner and outer edges that can be represented by
the Fourier series. In the following only the solution for the cosine series will be presented; the results for
the sine series can be derived in a similar manner. For symmetric loading against the y-axis, it suffices to
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consider only cosine series of the stress-resultant function. The corresponding boundary conditions can be
expressed as

200: cos(ng), N, ( zx: cos(ng), (17a)
Z ,(p r Z r(p (17b)
R.(a)=0, R.(b)=0, (17¢)

where bared quantities are constants.
Without losing generality, solution of the out-of-plane displacement w(r, ¢) can be expressed as

w= an cos(n¢), (18a)
which implies that the mean in-plane stress resultant and the stress-resultant function can be expressed as
N = ZN cos(na), (18b)
® =" ®,(r)cos(ng). (18¢)

Il
=}

n

Recalling the strain compatibility Eq. (12b), the mean stress resultant can be expressed in terms of the out-
of-plane displacement,

VE .
1T Wy +Anr™" + Anr"), (19)
where 4,; and A4,, are constants to be determined later. Substituting (19) into (12a) leads to, after sim-
plifying the coefficients,

d*w, 1 dw, n? B
T (KZ +r_2)w" = 12V (Aur ™ + Apr”). (20)

Nn(r) =

Applying the method of variation of parameters to the above equation, the function w can be written in the
form:

w,(r) = —? (Aur™ + Apr") + A K, (k1) + Apal, (i), (21)

where A4,; and 4,4 are constants yet to be determined, K, and 7, are the modified Bessel functions of nth
order.
In the cylindrical co-ordinate system the stress resultants are given by

100 18
M= o TR g 22
>
_ 2
Noo =33 (22b)

0 /109
N,«p:—a(;@)- (22¢)
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Recalling Eq. (15), the governing equation for @, becomes

d&’e, 1do, »*
drr r dr 2

@, = 2N,(r), (23)

with N,(r) being given by the following expression, noting Egs. (19) and (21),

vE

N (r) Zm[(

1= V) (Aur™" + Ar”) + 43K, (1) + Aual, ()] (24)

The solution of Eq. (23) can be obtained by the method of variation of parameters,

1 b r
,(r) = —— [7” / N, (&) dE / EN, (&) df] + A5t + At (25)
forn=1,2,3,... Here a and b are inner and outer radii of the circular region and & is merely the dummy
variable of integration. For each angular parameter n, there are six boundary conditions given by Egs.
(17a)—(17c¢), so that the all the integration constants can be fully determined.

4. An infinite plate with a circular hole undergoing extensional deformations

As an example of the application of the solution obtained in the previous section, consider an infinite
plate of thickness 2/ with a circular hole of radius @, which is subjected to a uniform state of stress parallel
to the mid-plane of the plate. In this case the constants Ay, A»4, and 4,4 in relationships (21) and (25) are
equals to zero. The remaining three constants A4y, 4,3, and 4,5 can be determined from the boundary
conditions.

Solution of this problem may be reached by superposition of the solution corresponding to the following
two basic loading cases: plane hydrostatic state of stress and plane state of pure shearing stress. In the first
case the solution in cylindrical co-ordinates is given by

— 1 — 1

where N, is a constant. We note that the Eq. (26) also represents the exact three-dimensional solution.
Thus, we only need to obtain a solution for the second (pure shear) case of loading, described by the
following boundary conditions at infinity:

N, = —N,c08(2¢), Nyyp = N2cos(2¢), N,y = Nsin(2¢). (27)

In this case we represent the solution as a sum of the pure shear state of an infinite plate without the hole
and the solution for an infinite plate with the hole when the boundary conditions are prescribed on the edge
of the hole,

N, (a) = Nacos(2¢), N,y(a) = —N,sin(2¢), Ry(a)=0, (28)

where N, is a constant that is not important in our further consideration because all results will be pre-
sented in the non-dimensional form. Solutions for the out-of-plane displacement, the mean stress resultant,
and the stress-resultant function are, because all other terms (n > 3) are zero,

w = [71421 Vzl"_z + A23K2(KI")] COS(2¢), (293)

N = % [A21(1 = v*)r? + A2 K ()] cos(2¢)), .
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&(r) = [@——/ & N df——/ éN dé} cos(2¢). (29¢)

The three integration constants 4,;, Ay;, and 4,5 are now to be determined from the boundary conditions
(28), yielding the following solutions:

2(1 = v))*a* (K, (ka) + K3(ka)]

o= VE{8v?K,(ka) + (1 — v*)k?a*[K, (ka) + Ks(ictl)}}Nz7 (30a)
_ 8v(1 —v?)ka _

A= E{8v?K;(ka) + (1 —v*)k2a*[K; (ka) + K;(Ka)]}N 2 (30b)

s =0. (30¢)

Superimposition of the solutions (27) and (29a)—(29¢) leads to the final stress resultants for an infinite plate
with circular hole subjected to a remote shear loading. In particular, the maximum hoop stress at the hole
edge, Nyg.max, 15 given by

N¢¢7,nax = 2N(I" =a, 9 = 0), (31)
from which the stress concentration factor can be readily derived,

Npgpmax _ dkalka(l — v*)K(ka) + 2K;(ka))
N, [4v? + k2a2(1 — v1) K| (ka) + 2ka(l — V1)K, (ka)

KT,shear = (32)
Fig. 2a shows the variation of this stress concentration factor for different plate thickness. It can be
seen that the stress concentration factor Kr e, increases with Poisson’s ratio but the maximum stress
concentration factor does not exceed ten percent of the corresponding plane-stress solution, where it is
equal to 4.

For the technically more significant loading of uniaxial tension at infinity (V.. = 0, N,, = N*), the so-
lutions can be readily obtained by superposition, Eq. (26) with N; = (1/2)N>~, and Eq. (28) with
N, = (1/2)N*®. The maximum stress concentration factor K7 nsion at the hole edge (¢ = 0) can then be
expressed as

K shear
KT,tension 1 + T2h 9 (33)

which is shown in Fig. 2(b). It can be seen for a Poisson’s ratio of 0.3, the maximum stress concentration
factor is only about 2% above the plane-stress solution, and therefore the influence of plate thickness can be
ignored for engineering applications.

Within the generalised plane-strain theory, the out-of-plane stress constraint defined by Eq. (1) can be
expressed in terms of the mean stress resultants,

sz o sz o +E w
V(N +N,,)  2WN v N’

Cz,shear = (34)
With the constants given by Egs. (29a)—(29¢) and (30a)—(30c), an explicit solution of the out-of-plane stress
constraint factor can be obtained as follows:

472K, (k1)

C. shear = ’ = a »
sh ka*(1 —v2)[K;(ka) + K3 (ka)] + 4v2r?Ky(xr) T >

It is readily seen that the constraint factor is dependent on the Poisson’s ratio and the ratio a/A only. It is
worth noting that the out-of-plane constraint factor is constant around the hole boundary, i.c., independent
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Fig. 2. The stress concentration as a function of ratio of the half-thickness to radius for an infinite plate with a circular hole subjected to
(a) shear loading and (b) uniaxial tension.

of the angle ¢. Fig. 3(a) shows the dependence of this constraint factor on the ratio of half-thickness to hole
radius.

For the case of uniaxial tension at infinity (V,, = 0, N,, = N*), since the plate thickness has a very minor
influence on the in-plane stress concentration, as shown in Fig. 2(b), a good approximate solution of the
out-of-plane constraint factor can be obtained similar to (32) from the superposition principle as follows:

2 2
=7 Czﬁ,shear ~ g Cz,shear- (36)

Czﬁtension K
T ,tension

Since the maximum value of C. e, 1S unity in the plane-strain limit, the present solution suggests that the
maximum out-of-plane constraint does not exceed 2/3, which is consistent with the exact plane-strain value
of limy/,—. 0. = 2v (Sternberg and Sadowsky, 1949).

As seen in Fig. 4 that Poisson’s ratio has a little effect on the maximum constraint factor, which depends
strongly on the ratio of half-plate thickness to the hole radius. To further illustrate this point, distributions
of the out-of-plane constraint factor for three different Poisson’s ratios are plotted in Fig. 4, where the
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Fig. 3. The out-of-plane constraint factor of plate with a circular hole subjected to (a) shear loading and (b) uniaxial tension. Poisson’s
ratio is 0.3. The parameter ¢ denotes the distance from the edge of the hole.

h/a = 2. These results clearly show that the Poisson’s ratio has only a minor influence on both the max-
imum value and the distribution of the stress constraint factor.

5. V-shaped notch with a circular tip

As it has been shown earlier for the case of circular hole the transverse shear effect has a small influence
on the in-plane stress field. This is also true for other notch configurations (Li et al., 2000, 2001). Therefore
it is possible to obtain with a high level of accuracy the out-of-plane displacement w, and hence the out-
of-plane constraint, by approximating the mean in-plane stress resultant N using two-dimensional plane-
stress solution, i.e.,

N =~ 2ha,, (37)
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Fig. 4. Out-of-plane constraint factor as a function of the distance () from the edge of the hole (radius = a) showing the effect of
Poisson’s ratio in the case of the pure shear loading (4/a = 2).

where 6,, = (0, + 0,,)/2 is the plane solution of the problem. Consider a semi-infinite plate with a deep
notch, which has a circular tip of radius p, subjected to remote tension at the infinity, as shown in Fig. 5.
The two-dimensional solution of this problem results in a unique stress distribution near the notch root
(Lazzarin and Tovo, 1996), with the magnitude being proportional to the applied load. The mean stress for
mode I (tension) can be written in the form:

o = Bir ' cos[(1 — 4p) ). (38)
Similarly, the mean stress under remote shear mode loading can be expressed as
0 = By ' sin[(1 — 1)), (39)

where parameters B; and B, are dependent on the applied load and notch geometry, A; and /, are the
eigenvalues with the smallest real parts of the following characteristic equations:

sin[4; (2w — 29)] + A sin(2n — 2y) =0 (tensile mode), (40)
and
sin[A, (2 — 2y)] — Z,sin(2n — 2y) =0 (shear mode), (41)
Yy
p @
2y " x
) t

Fig. 5. Co-ordinate systems and notations for a V-shaped notch with a circular tip.
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and the origin of the co-ordinate system is centred at a distance r, behind the notch tip,
T —2y
2n — 2y

ro (42)

It is worth noting that, according to the present theory, the order of singularity for a sharp V-notch in a
plate of arbitrary thickness remains the same as that corresponding to plane-stress or plane-strain, which
are the same (Williams, 1952). Plots of /; and 4, as a function of the notch opening angle 2y are available,
for example in (Williams, 1952; Lazzarin and Tovo, 1996). Consequently from (21), the approximate so-
lution of the problem will involve the modified Bessel functions of 1 — 4, or 1 — A, order.

A first order solution for the out-of-plane constraint factor can be obtained by approximating N(r, ¢) to
have the same angular dependence as the corresponding plane-stress solution,

N(r,¢) = N,(r)cos(ngp), n=1-—21;, for model, (43)
and
N(r,¢) = N,(r)sin(n¢p), n=1-—1,, for mode II (44)

It should be pointed out no assumption has been made about the function N,(r), which should be deter-
mined from the governing equations using the method outlined in the previous section. In particular, the
mean in-plane stress resultant N and the out-of-plane displacement w are given by Egs. (21) and (24), with
the two integration constants 4,, = 0 and 4,4 = 0. In particular, the mean in-plane stress resultant and the
out-of-plane displacement are,

E
No(r) = 75 [ (1 = V)" + Ak, ()] cos (), (45a)
Wo(r) = [=An V2 r " 4 4,3K, (k)] cos(ng). (45b)
The two constants 4,; and 4,3 can be determined from the following boundary conditions:
N, (r =ro) =N, (46a)
dw,(r)
=0 46b
dr r—ro Y ( )

where N, denotes the mean in-plane stress resultant at the tip of the notch. The solutions of the constants
are,

— (1= V) kry ™K1 (k70) + Koyt (70)]

A,,l = N, VEH s (47&)
— 2nv(1 —v?)
Ay =N ~———=, 47b
3 t EH ( )
with
H = (1 = )kro[K,_1 (kr0) + K,y (k70)] + 202K, (k7). (47¢c)

The fact that the constant 4,3 is not zero indicates that the mean in-plane stress resultant differs from the
plane-stress solution, which is similar to the findings by Yang and Freund (1985) for the case of a tensile
crack in a finite thickness plate. However, the difference, which is given by the modified Bessel function K,
diminishes rapidly as the distance increases from the notch root, so that the plane-stress is asymptotically
approached as large distance from the notch root.
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Fig. 6. The maximum constraint factor at notch root (¢ = 0) as a function of the distance ¢ from the notch tip for various ratios of
plate half-thickness / to notch root radius p (v = 0.3).

Now the out-of-plane stress constraint factor directly ahead of notch tip (6 = 0) defined by (34) can be
obtained as follows:
2nr"K, (kr)
(1 = v2)rg ™K1 (k70) + Koy1 (k70)] + 202K, (7)

C.(r) = (48)

It is readily seen that this new solution recovers, as a special case (n = 2), the constraint factor for a circular
hole given by Eq. (35).

Consider the case of a parallel slit with a round tip subjected to tensile loading. In this case the opening
angle 2y is zero, leading to n = 1/2 and ry = (1/2)p. The out-of-plane constraint factor now reduces to

1
(1 =v2)(1 4+ kp)es +v2’

C.(1) = (49)
where ¢ (= » — p/2) denotes the distance ahead of the notch tip. The above solution is graphically shown in
Fig. 6 for three different ratios of half-plate thickness to notch-tip radius. It is noted that both formulas for
the constraint factor, Egs. (35) and (49), exhibit proper behaviour in the limiting cases. For example, both
the cases of plane-stress and plane-strain are recovered because lim,/,_o C; — 0 and lim,;, ., C. — 1. It is
also clear that plane-stress prevails at large distance from the notch root, i.e., lim,/,—.., C. — 0.

The out-of-plane constraint factor attains it peak value at the notch root (¢ = 0), where the constraint
factor becomes,

1

R (T

(50)
It is clear that this constraint factor C, depends only on Poisson’s ratio and the ratio of notch-tip radius to
the half-thickness of the plate (p/4). A comparison of the maximum constraint factors (directly ahead of
notch tip ¢ = 0) for the case of deep notch and the case of circular hole under uniaxial tension is presented
in Fig. 7, together with the results of a finite element analysis (Li et al., 2000). Here the results of the finite
element analysis are in terms of the constraint along the mid-plane of the plate. It is clear that although the
present solution represents the average constraint through the plate thickness, the theoretical estimates
compare very well with the computational results.
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Fig. 7. The maximum constraint factor for the deep notch with zero opening angle and circular hole in an infinite plate under uniaxial
tension versus the ratio of the plate’s half-thickness to notch tip or hole radius (Poisson’s ratio v = 0.3).

To further examine the distribution of the constraint factor ahead of notch tip, a normalisation is in-
troduced by dividing the constraint factor by its maximum value,
C.(t)  (1—=v)(1+xkp)+? o (51)
C.0) " (1—w)(1 trp)e+v2 ¢
It is clear that the normalised distribution, when plotted against the ratio of distance to the half-plate
thickness, depends very weakly on Poisson’s ratio and the ratio of notch root radius to plate thickness. This
result is consistent with the finite element results of Li et al. (2000). A comparison between the present
theoretical solution and the finite element results of Li et al. (2000) is shown in Fig. 8. It can be seen that the
present theoretical solution correlates well with the numerical solution close to the notch root. However,
the finite element results showed that the normalised constraint factor dips below zero at a distance of 0.375

C.(1)
CZ max
0.8 F Lines: present solution
T Symbols: Finite element results (Li et al)
0.6 7 Poisson’s ratio v = 0.3
041 hjp =10
02 | h /
0 r n
r h/p =1 - n -
-0.2 L L
0 1 2 t/h

Fig. 8. Distribution of normalised constraint factor ahead of notch tip for uniaxial tension.
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times the plate thickness (¢/# = 0.75), while the present theory shows that the constraint factor remains
positive. This may be due to that the finite element results are for the mid-plane values, rather the through-
thickness average.

It is also worth noting that the present results confirm that the average of the through-the-thickness
stress, i.e., N,, is a monotone increasing function of the normalised plate thickness (%/p) which asymp-
totically approaches the plane-strain solution. Therefore the present method has overcome the convergence
problem of the series expansion solution of Sternberg and Sadowsky (1949). The explicit solutions pre-
sented here are also very convenient for engineering applications as they can be readily implemented to
provide an accurate estimate of the influence of plate thickness on the through-the-thickness stress con-
straint. The present solution method can be readily extended to sharp cracks, leading to possibly simpler
solutions than those obtained by Yang and Freund (1985). This will be the subject of a separate article.

6. Conclusion

Based on the generalised plane-strain theory, which assumes that the through-thickness strain is uniform
in the thickness direction, the three-dimensional governing equations have been reduced to a set of two-
dimensional equations. These new governing equations permit an exact solution for an annulus with ar-
bitrary edge loading, and for an infinite plate with a circular hole. The results show that, although the stress
concentration factor for a circular hole in an infinite plate is only slightly perturbed from the plane-strain
solution over a wide range of thickness to radius ratio, the out-of-plane constraint is strongly dependent on
the ratio of plate thickness to radius.

By extending the method to non-circular holes, explicit formulac have also been derived for the out-
of-plane constraint factor for V-shaped notches with circular tip. The present results have been validated by
comparison against the results of finite element analyses, showing good correlation. It is shown that the
out-of-plane constraint factor is strongly dependent on the ratio of plate thickness to notch-tip radius.
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Appendix A

The strain compatibility equation for the in-plane strains is

e | 0%y 0%y,

= . A.l
0y? + ox?  OxOy (A1)
According to Hooke’s law, using the present notation,
1
Exx = ﬁ (Nxx - vjv}y - Vsz)a (A2)
1
Syy = 2}17E (Nyy - V]vxx - Vsz)a (A3)
1
Ver = (L+7) N, (A.4)

hE
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Substituting Egs. (A.2)-(A.4) into (A.1) yields,
o o 2N,

> (New = W) + 75 (N = WNee) — VAN, =2(1 +) a0y (A.5)
From the equilibrium equations the following relationship can be derived:
Therefore the compatibility Eq. (A.1) finally becomes,

V(2N —wN..) = 0. (A.7)
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